

United States Department of Agriculture

Jennifer Moore Kucera, Ph.D.
West Region Soil Health Team Leader
Soil Health Division
4/6/2017

Unlocking the Secrets to Soil Health Success in Organic Systems Aurora, Oregon

Reasons for Soil Health Testing

- Understand constraints beyond nutrient limitations and excesses
- Target management practices to alleviate those constraints
- Measure soil improvement or degradation from management
- Improve awareness of Soil Health (not just plant nutrition)
- Enable valuation of farmland
- Enable assessment of farming system risk

Assessing Soil Health Using Indicators

A soil health indicator is a measurement of a soil property that provides information about the status of specific important soil processes

Field Indicators of Soil Health

Field Based – Use your senses

- Smell: rich, earthy smell is produced by Actinobacteria as they decompose organic materials
- Feel: Soft, crumb-like structure
- Sight: No signs of erosion, crusting, salts
- Sight: Earthworms/macrofauna typically beneficial
- Sight: White, filament networks are signs of fungi
- Sight: Deep, abundant roots; no abrupt bends, etc.

Additional Field Indicators

- Penetration resistance
- Aggregation
- Color
- Residue cover
- Infiltration
- Field respiration

Important Soil Processes & Potential Indicators

Water Partitioning

- Available water capacity
- Macroaggregate stability

Soil Organic Matter Cycling

- Soil organic C (more accurate)
- Soil organic matter (typically offered; easier & cheaper)

Carbon Food Source

Permanganate oxidizable C (Active C)

Microbial Activity

- Short-term C mineralization (respiration)
- Enzyme activities

Bioavailable N

- ACE proteins
- N mineralization

Microbial Community Composition

Fatty acid profiling (EL-FAME)

Soil Health Indicators - Chemical

Nutrient Availability

- NPK Major plant nutrients
- Trace Elements

Chemical Reactivity

- pH
- Salinity / Sodicity

Nutrient Recommendations from Land Grant Universities

Important Soil Processes & Potential Indicators

Water partitioning

- Available water capacity
- Macroaggregate stability

United States Department of Agriculture

Available waterholding capacity

- Plant available
- Drought resistance
- Minimize leaching

United States Department of Agriculture

Aggregate Stability

- Resist erosion
- Infiltration & Aeration
- Biological habitat

Important Soil Processes & Potential Indicators

Water Partitioning

- Available water capacity
- Macroaggregate stability

Soil Organic Matter Cycling

- Soil organic C (more accurate)
- Soil organic matter (typically offered; easier & cheaper)

Carbon Food Source

Permanganate oxidizable C (Active C)

Managing SOM key to air/ H₂O quality & soil health

Carbon is the currency of soil

"Carbon can be <u>collected (photosynthesis), spent</u> (traded to soil organisms), <u>saved</u> (SOM), and is universally <u>desired</u> by all members of the economy." -Keith Berns

United States Department of Agriculture

Active Carbon

- Labile C pool
- Microbial energy source
- Early indicator of SOM +/-

Potassium permanganete (KMnO₄) oxidation:

 Provides an indication of the portion of organic matter that provides food and energy to soil microbes.

• Related to microbial biomass and other (more

complex) measures of labile C

More responsive than total organic C

Important Soil Processes & Potential Indicators

Water Partitioning

- Available water capacity
- Macroaggregate stability

Soil Organic Matter
Cycling

- Soil organic C (more accurate)
- Soil organic matter (typically offered; easier & cheaper)

Carbon Food Source

Permanganate oxidizable C (Active C)

Microbial Activity

- Short-term C mineralization (respiration)
- Enzyme activities

Bioavailable N

- ACE proteins
- Potentially mineralizable nitrogen

Carbon Mineralization

- Biological activity
- Decomposition
- Nutrient cycling

Reduced till treatments with cover had <u>~2x</u> higher CO₂ burst levels than conventional till cotton systems

Mixed Cover includes: hairy vetch (*Vicia villosa* Roth), radish (*Raphanus sativus* L.), Winter pea (*Pisum sativum* L.), and rye (*Secale cereal* L.)

Ongoing Texas research, unpublished data; J. Burke and K. Lewis

Organic amendments had <u>~2-3x</u> higher CO₂ burst levels than conventional N fertilizers

Ongoing Hawaiian research, unpublished data; J. Deenik and S. Crow

United States Department of Agriculture

Enzyme activities

- Biological activity
- Decomposition
- Nutrient cycling

Carbon cycling
Breakdown of cellulose, chitin,
and other C-containing
compounds release sugars
and carbohydrates that fuel
microbes

Release of phosphate from organophosphates

Degradation of organic contaminants

– oxidases and hydrolases

Enzyme activities:

extractions of enzymes excreted by soil microbes are responsible for transforming nutrients and forming soil organic matter

Nitrogen cycling
Release of ammonium,
amino-sugars from the
breakdown of organic N
compounds (urea, amides,
proteins, amino acids, etc.)

Sulfar cycling
Sulfatases release
sulfate from
organosulfates

Degradation of lignin/ complex SOM— phenol oxidases and peroxidases

Enzyme activities increased 17-75% following transition from cotton to biofuel sorghum (after only 1 year)

Soil protein • Microbial energy source

- Labile N pool
- N cycling

		Soil organic matter (%)	Active Carbon (ppm)	Soil protein (mg/g)	Soil Respir. (mg/g)
All Practices Combined	With	2.2	461	5.3	0.5
(9 paired fields)	Without	1.8	374	4.0	0.4
	Effects and potential	©	©	©	©
Organic Amendments	With	2.6	566	6.4	0.6
Organic Amendments	Without	2.2	480	4.6	0.4
	Effects and potential	©	⊜	☺	☺
Green Manures	With	1.9	364	4.6	0.4
	Without	1.5	329	3.6	0.3
	Effects and potential	©	⊜	©	©

Effects on soil

Positive effect (P < 0.05 probability level)</p>

No effect

Potentially mineralizable N

- Conversion organic N to plant available forms
- Biological activity
- N release

Important Soil Processes & Potential Indicators

Water partitioning

- Available water capacity
- Macroaggregate stability

Soil organic matter cycling

- Soil organic C (more accurate)
- Soil organic matter (typically offered; easier & cheaper)

Carbon Food Source

Permanganate oxidizable C (Active C)

Microbial Activity

- Short-term C mineralization (respiration)
- Enzyme activities

Bioavailable N

- ACE proteins
- N mineralization

Microbial Community Composition

Fatty acid profiling (EL-FAME)

Microbial community

- Overall microbial biomass (MB)
- Fungi:Bacteria
- Broad taxonomic groups
- MB makes up to 5% of total SOC
- MB holds up to 50 lb N/ac
- Very sensitive to management changes
- Single measurements difficult to interpret but trends over time provide insights to management effects on microbes
- Different microbial groups provide indication of functional shifts due to management

Microbial community

- Ester-linked fatty acid methyl ester profiling
- (EL-FAME)

What are fatty acids?

- Essential cellular components that help form a protective layer around cells.
- All organisms except Archaea have ester-linked fatty acids
- Different types of 'tails' are biomarkers of different microbial groups

Total & Bacterial FAME Biomarkers & Interpretation

Microbial Group	Generalizations for interpretation	
Total PLFA	Proxy for total microbial biomass (C flow)	
Gram negative (GM-)	Respond rapidly to fresh inputs; Increase with increased SOM; Sensitive to H ₂ O stress;	
Gram positive (GM+)	More resistant to environ stress; Degrade complex SOM	
Actinobacteria	Degrade complex SOM; aid in aggregation via filaments; tolerant of salt, high pH	
GM+:GM- ratio	High ratios common in cultivated soils (low C; low OM inputs) compared to grasslands	

Fungal & Protozoan FAME Biomarkers & Interpretation

Group	Generalizations for interpretation	
Saprophytic fungi	Associated with high organic matter; complex SOM decomp; low pH;	
Ectomycorrhizae	Associated with woody species; Same biomarkers as saprophytic fungi so ecosystem type important for interpretation	
Arbuscular mycorrhizae	Higher in less (physically) disturbed lands; important for aggregation, P, H ₂ O uptake, plant protection	
F:B ratio	Higher values generally associated with greater functional benefits and less soil disturbance	
Protozoa (possibly also nematodes)	N mineralization; population control	

Within 5 years following conversion of CRP to cropland, AMF \downarrow 61%, 39% \uparrow GM+

Li, C. et al. (unpublished data)

USDA | NRCS | Soil Biology

United States Department of Agriculture

Example using Cornell Assessment for Soil Health

Measured Soil Textural Class: silty clay loam

Sand: 6% - Silt: 66% - Clay: 27%

Measured Soil Textural Class: silty clay loam

Sand: **8%** - Silt: **60%** - Clay: **30%**

che	emical	Soil pH	6.4	100	
che	emical	Extractable Phosphorus	7.0	100	
che	emical	Extractable Potassium	359.9	100	
che	emical	Minor Elements Mg: 482.7 / Fe: 1.7 / Mn: 9.6 / Zn: 2.9		100	

chemical	Soil pH	6.7	100	
chemical	Extractable Phosphorus	3.4	96	
chemical	Extractable Potassium	364.8	100	
chemical	Minor Elements Mg: 545.7 / Fe: 1.1 / Mn: 8.6 / Zn: 0.5		100	

Soil Health Management Planning Process Overview

- 1. Determine farm background & management history
- 2. Set goals and sample for soil health
- 3. For each management unit: identify and explain constraints, prioritize
- 4. Identify feasible management options
- 5. Create short and long term soil health management plan
- 6. Implement, monitor, and adapt

Management Strategies

Table 5. Suggested management strategies for addressing soil health constraints

	Suggested Management Practices		
	Short term or intermittent	Long term	
Physical Concerns			
Low aggregate stability	Fresh organic materials (shallow-rooted cover/rotation crops, manure, green clippings)	Reduced tillage, surface mulch, rotation with sod crops	
High surface density	Limited mechanical soil loosening (e.g. strip tillage, aerators); shallow-rooted cover crops, bio-drilling, fresh organic matter	shallow-rooted cover/rotation crops; avoid traffic on wet soils; controlled traffic	
High subsurface density	Targeted deep tillage (zone building, etc.); deep rooted cover crops	Avoid plows/disks that create pans; reduced equipment loads/traffic on wet soils	
Biological Concerns			
Low organic matter content	Stable organic matter (compost, crop residues high in lignin, biochar); cover and rotation crops	Reduced tillage, rotation with sod crops	
Low active carbon	Fresh organic matter (shallow-rooted cover/ rotation crops, manure, green clippings)	Reduced tillage, rotation	
Low mineralizable N (Low PMN)	N-rich organic matter (leguminous cover crops, manure, green clippings)	Cover crops, manure, rotations with forage legume sod crop, reduced tillage	
Low mineralizable N (Low PMN)	N-rich organic matter (leguminous cover crops, manure, green clippings)	Cover crops, manure, rotations with forage legume sod crop, reduced tillage	
Chemical concerns	See also soil fertility recommendations		
Unfavorable pH	Liming materials or acidifier (such as sulfur)	Repeated applications based on soil tests	
Low P, K and Minor elements	Fertilizer, manure, compost, P-mining cover crops, mycorrhizae promotion	Application of P, K materials based on soil tests; increased application of sources of organic matter; reduced tillage	

Diverse Skillset Necessary for Proper Interpretation

Adapted from Seybold et al., 1998.

Soil Health Assessments and Soil Health Management Plans

- Soil health assessments provide greater insights to management impacts on how the overall system functions compared to traditional soil tests.
- Soil biological indicators are very sensitive but further standardization is needed to improve interpretations.
- Need comprehensive Soil Health Management
 Planning and Adaptive Implementation for Progress in Soil & Water Conservation

National and Local Efforts

- National and local/regional efforts underway to improve scoring functions/ interpretations...
- National Soil Health Assessment Initiative (NRCS-SHD)
- Teresa Matteson led Benton County Soil Quality Project beginning in 2009
- Expanded this past year in collaboration with NRCS and OSU-CAL to identify soil health assessments and interpretations and develop a database specific for this region

Thank You!

This information is provided as a public service and constitutes no endorsement by the United States Department of Agriculture or the Natural Resources Conservation Service of any service, supply, or equipment listed.

Jennifer.kucera@por.usda.gov 503-320-8286

